- Introduction
- Ch. 1 Stormwater Management Requirements
- Ch. 2 Submission, Review, and Approval Procedures
- Ch. 3 Site Design and Stormwater Management Integration
- Ch. 4 Stormwater Management Practice Guidance
- Ch. 5 Construction Guidance
- Ch. 6 Post-Construction and Operations and Maintenance Guidance
- Appendices
- Download
- Back to Chapters
- Manual Organization and Purpose
- Stormwater Regulations
- Private Development Services
- Stormwater Billing and Incentives
- Stormwater Management in Philadelphia
- Applicability and Submission Process
- Preferred Design Approach
- Back to Chapters
- 1.0 Introduction
- 1.1 Applicability Factors
- 1.2 Stormwater Regulations
- 1.3 Stormwater Retrofits
- Back to Chapter 1
- 1.2.1 Post-Construction Stormwater Management Requirements
- 1.2.2 Erosion and Sediment Control Requirement
- Back to Chapter 1
- 1.3.1 Retrofit Project Applicability and Initiation
- 1.3.2 Retrofit Project Requirements and Guidance
- Back to Chapters
- 2.0 Introduction
- 2.1 Existing Resources and Site Analysis
- 2.2 Review Paths
- 2.3 Review Phases
- 2.4 Expedited Post-Construction Stormwater Management Plan Reviews
- 2.5 PWD’s Development Review Process
- 2.6 PWD’s Role in Philadelphia's Development Process
- 2.7 PWD and Pennsylvania Department of Environmental Protection
- Back to Chapter 2
- 2.2.1 Development Compliance Review Path
- 2.2.2 Development Exemption Review Path
- 2.2.3 Demolition Review Path
- 2.2.4 Stormwater Retrofit Review Path
- Back to Chapter 2
- 2.3.1 Development Compliance Review Path
- 2.3.2 Development Exemption Review Path
- 2.3.3 Demolition Review Path
- 2.3.4 Stormwater Retrofit Review Path
- Back to Chapter 2
- 2.4.1 Disconnection Green Review
- 2.4.2 Surface Green Review
- 2.4.3 Expedited PCSMP Review Process
- Back to Chapter 2
- 2.7.1 National Pollutant Discharge Elimination System Permits
- 2.7.2 Other PA DEP Requirements
- Back to Chapters
- 3.0 Introduction
- 3.1 Site Assessment and Stormwater Management Strategies
- 3.2 Stormwater Management Design
- 3.3 Infiltration Testing and Soil Assessment for SMP Design
- 3.4 How To Show Compliance
- 3.5 Integrated Stormwater Management Examples
- Back to Chapter 3
- 3.0.1 How to Use This Chapter
- 3.0.2 Integrated Site and Stormwater Management Assessment and Design Process Overview
- 3.0.3 Interactions between Design Strategies, Stormwater Regulations, and Review Paths
- Back to Chapter 3
- 3.1.1 Background Site Factors and Site Factors Inventory
- 3.1.2 Site Factors Analysis
- 3.1.3 Integrated Design Approach
- 3.1.4 Non-Structural Design
- 3.1.5 Disconnected Impervious Cover
- 3.1.6 SMP Functions
- 3.1.7 Pollutant- Reducing Practices and Roof Runoff Isolation
- 3.1.8 How to Use SMPs to Comply with the Regulations
- Back to Chapter 3
- 3.2.1 Major SMP Types
- 3.2.2 SMP Hierarchy and Selection Process
- 3.2.3 Placing SMPs in Series
- 3.2.4 Stormwater Management Banking and Trading
- 3.2.5 SMP Design Guidance and General Requirements
- 3.2.6 Loading Ratio Requirements
- 3.2.7 Planting and Vegetation Guidance
- 3.2.8 Operations and Maintenance
- Back to Chapter 3
- 3.3.1 Infiltration Testing and Soil Characterization Plan Development
- 3.3.2 Soil Characterization Requirements
- 3.3.3 Infiltration Testing Requirements
- 3.3.4 Soil Characterization Procedures
- 3.3.5 Infiltration Testing Procedures
- 3.3.6 Evaluation of Infiltration Testing Results
- Back to Chapter 3
- 3.4.1 Regulatory Compliance Documentation Requirements
- 3.4.2 Storm Sewer Design Requirements
- 3.4.3 Calculation Methods and Design Tools
- Back to Chapter 3
- 3.5.1 Commercial Office Building Development
- 3.5.2 Residential Multi-Family Development
- 3.5.3 Full Build-Out
- 3.5.4 Trails
- 3.5.5 Athletic Fields
- 3.5.6 Streets
- Back to Chapters
- 4.0 Introduction
- 4.1 Bioinfiltration/ Bioretention
- 4.2 Porous Pavement
- 4.3 Green Roofs
- 4.4 Subsurface Infiltration
- 4.5 Cisterns
- 4.6 Blue Roofs
- 4.7 Ponds and Wet Basins
- 4.8 Subsurface Detention
- 4.9 Media Filters
- 4.10 Pretreatment
- 4.11 Inlet Controls
- 4.12 Outlet Controls
- Back to Chapter 4
- 4.1.1 Bioinfiltration/ Bioretention Introduction
- 4.1.2 Bioinfiltration/ Bioretention Components
- 4.1.3 Bioinfiltration/ Bioretention Design Standards
- 4.1.4 Bioinfiltration/ Bioretention Material Standards
- 4.1.5 Bioinfiltration/ Bioretention Construction Guidance
- 4.1.6 Bioinfiltration/ Bioretention Maintenance Guidance
- Back to Chapter 4
- 4.2.1 Porous Pavement Introduction
- 4.2.2 Porous Pavement Components
- 4.2.3 Porous Pavement Design Standards
- 4.2.4 Porous Pavement Material Standards
- 4.2.5 Porous Pavement Construction Guidance
- 4.2.6 Porous Pavement Maintenance Guidance
- Back to Chapter 4
- 4.3.1 Green Roof Introduction
- 4.3.2 Green Roof Components
- 4.3.3 Green Roof Design Standards
- 4.3.4 Green Roof Material Standards
- 4.3.5 Green Roof Construction Guidance
- 4.3.6 Green Roof Maintenance Guidance
- Back to Chapter 4
- 4.4.1 Subsurface Infiltration Introduction
- 4.4.2 Subsurface Infiltration Components
- 4.4.3 Subsurface Infiltration Design Standards
- 4.4.4 Subsurface Infiltration Material Standards
- 4.4.5 Subsurface Infiltration Construction Guidance
- 4.4.6 Subsurface Infiltration Maintenance Guidance
- Back to Chapter 4
- 4.5.1 Cistern Introduction
- 4.5.2 Cistern Components
- 4.5.3 Cistern Design Standards
- 4.5.4 Cistern Material Standards
- 4.5.5 Cistern Construction Guidance
- 4.5.6 Cistern Maintenance Guidance
- Back to Chapter 4
- 4.6.1 Blue Roof Introduction
- 4.6.2 Blue Roof Components
- 4.6.3 Blue Roof Design Standards
- 4.6.4 Blue Roof Material Standards
- 4.6.5 Blue Roof Construction Guidance
- 4.6.6 Blue Roof Maintenance Guidance
- Back to Chapter 4
- 4.7.1 Pond and Wet Basin Introduction
- 4.7.2 Pond and Wet Basin Components
- 4.7.3 Pond and Wet Basin Design Standards
- 4.7.4 Pond and Wet Basin Material Standards
- 4.7.5 Pond and Wet Basin Construction Guidance
- 4.7.6 Pond and Wet Basin Maintenance Guidance
- Back to Chapter 4
- 4.8.1 Subsurface Detention Introduction
- 4.8.2 Subsurface Detention Components
- 4.8.3 Subsurface Detention Design Standards
- 4.8.4 Subsurface Detention Material Standards
- 4.8.5 Subsurface Detention Construction Guidance
- 4.8.6 Subsurface Detention Maintenance Guidance
- Back to Chapter 4
- 4.9.1 Media Filter Introduction
- 4.9.2 Media Filter Components
- 4.9.3 Media Filter Design Standards
- 4.9.4 Media Filter Material Standards
- 4.9.5 Media Filter Construction Guidance
- 4.9.6 Media Filter Maintenance Guidance
- Back to Chapter 4
- 4.10.1 Pretreatment Introduction
- 4.10.2 Filter Strips
- 4.10.3 Forebays
- 4.10.4 Swales
- Back to Chapter 4
- 4.11.1 Inlet Control Introduction
- 4.11.2 Flow Splitters
- 4.11.3 Curbless Design/Curb Openings
- 4.11.4 Energy Dissipaters
- 4.11.5 Inlets
- Back to Chapter 4
- 4.12.1 Outlet Control Introduction
- 4.12.2 Orifices
- 4.12.3 Weirs
- 4.12.4 Risers
- 4.12.5 Underdrains
- 4.12.6 Level Spreaders
- 4.12.7 Impervious Liners
- 4.12.8 Micro Siphon Drain Belts
- 4.12.9 Low Flow Devices
- Back to Chapters
- 5.0 Introduction
- 5.1 Construction Inspection
- 5.2 Common Construction Issues
- 5.3 Construction Documentation
- Back to Chapter 5
- 5.1.1 Coordinating Inspections with Other PWD Units
- 5.1.2 Preconstruction Processes
- 5.1.3 Construction Processes
- 5.1.4 Final Inspection
- 5.1.5 Post-Construction Submissions
- Back to Chapter 5
- 5.2.1 Erosion and Sediment-Related Construction Issues
- 5.2.2 Stormwater Management Practice-Related Construction Issues
- Back to Chapters
- 6.0 Introduction
- 6.1 Operations and Maintenance
- 6.2 Stormwater Management Practice Inspection Guidance
- 6.3 Stormwater Credits Program
- Back to Chapter 6
- 6.1.1 Maintenance Requirements for Property Owners
- 6.1.2 Operations and Maintenance Agreements
- Back to Chapters
- Appendix Index
- A. Glossary
- B. Abbreviations
- C. PWD Stormwater Regulations
- D. Watershed Maps
- E. Plan and Report Checklists
- F. Design Guidance Checklists
- G. SMP Maintenance Guide Documents
- H. Infiltration Testing Log
- I. Landscape Guidance
- J. Construction Certification Package
- K. Record Drawing Sample
- L. Standard Details
- Back to Appendices
- Table E-1: General Plan Sheet Requirements
- Table E-2: Existing Conditions Plan Requirements
- Table E-3: Conceptual Stormwater Management Plan Requirements
- Table E-4: Erosion and Sediment Control Plan Requirements
- Table E-5: Standard Erosion and Sediment Control Notes
- Table E-6: Standard Sequence of Construction Notes
- Table E-7: Post-Construction Stormwater Management Plan Report Requirements
- Table E-8: Record Drawing Requirements
- Back to Appendices
- F.1 Stormwater Regulation Compliance
- F.2 Post-Construction Stormwater Management Plan
- F.3 Erosion and Sediment Control
- F.4 Disconnected Impervious Cover
- F.5 Infiltration Testing and Soil Assessment
- F.6 Hydrologic Model and Calculation Methods
- F.7 Bioinfiltration/ Bioretention
- F.8 Porous Pavement
- F.9 Green Roofs
- F.10 Subsurface Infiltration
- F.11 Cisterns
- F.12 Blue Roofs
- F.13 Ponds and Wet Basins
- F.14 Subsurface Detention
- F.15 Media Filters
- F.16 Pretreatment
- F.17 Inlet Controls
- F.18 Outlet Controls
F.17 Inlet Controls
F.17.1 Flow Splitter Design and Material Standards
- Verify that the bypass elevation is set, at minimum, at the design storage elevation in the SMP. Flow will then only start to bypass the SMP once it exceeds the design storage elevation of the SMP. The design storage elevation is the water surface elevation at which the SMP storage area contains the runoff volume from a design storm event (for example, the WQv or the 10-year, 24-hour storm). [Section 4.11.2, 1]
- Verify that positive overflow is provided for large storm events, up to and including the 100-year, 24-hour storm event, or, if the project is exempt from Flood Control, the ten-year, 24-hour storm. [Section 4.11.2, 2]
- Verify that overflow structures and pipes are designed to convey at least the ten-year, 24-hour storm event. The system should have enough capacity to transmit larger flows over the bypass weir without surcharging the structure. [Section 4.11.2, 2]
F.17.2 Curbless Design/Curb Opening Design and Material Standards
- If flow is to be introduced through curb openings, verify that the pavement edge is slightly higher than the elevation of the vegetated areas within the SMP. [Section 4.11.3, 1]
- Verify that curbless design/curb openings are designed to convey flow into an SMP without inducing erosive conditions. Integration of energy dissipaters is recommended where appropriate. [Section 4.11.3, 2]
- Verify that curb openings are designed to reduce bypass of gutter flow past the curb opening. This is a common problem with many curb openings that are oriented perpendicular to flow. [Section 4.11.3, 3]
- If curb openings are used to capture runoff, especially from driveways or roadways where the curb openings are not in a sump condition, verify that documentation that runoff from the one-year, 24-hour storm event will be captured by the curb opening is provided. [Section 4.11.3, 4]
- Verify that erosion control fabric, if proposed, is designed in accordance with the channel design procedures in the latest edition of the Pennsylvania Department of Environmental Protection (PA DEP) Erosion and Sediment Pollution Control Program Manual, or per the manufacturer’s specifications. [Section 4.11.3, 6]
- Verify that curb openings are designed as gaps in otherwise continuous sections of concrete or granite curb conforming to the specifications of the City of Philadelphia Department of Streets, Standard Construction Items (1997). [Section 4.11.3, 7]
- Verify that all subsurface portions of concrete or granite curb (i.e. below finished pavement grade) are continuously installed within the extents of the curb opening. [Section 4.11.3, 8]
- Verify that curb openings are appropriately sized to convey the design discharge. Curb openings are typically 12 to 48 inches wide. Verify that curb openings are at least eight inches wide to prevent clogging and for ease of maintenance. [Section 4.11.3, 10]
F.17.3 Energy Dissipater Design and Material Standards
- Verify that an energy dissipater is proposed if flow is concentrated at the entrance to a surface SMP. [Section 4.11.4, 1]
- Verify that riprap is designed and sized in accordance with the riprap apron design procedures in the latest edition of the PA DEP Erosion and Sediment Pollution Control Program Manual or U.S. Army Corps of Engineers, Hydraulic Engineering Center Circular 14 (HEC-14). [Section 4.11.4, 2]
- Verify that riprap stone is angular, graded stone aggregate meeting the specifications of PennDOT Publication 408, Section 703.2, Coarse Aggregate, Type A. [Section 4.11.4, 3]
- For stream outfalls, verify that the energy dissipation design tools HEC 11, HEC 14, and HEC 15 are used for riprap, energy dissipaters, and flexible linings, respectively. [Section 4.11.4, 4]
F.17.4 Inlet Design and Material Standards
- Verify that inlets are not connected in series. Similarly, roof drainage systems must not be directly connected to inlets. [Section 4.11.5, 1]
- Verify that all inlets include a sump and trap or sump and hood for pretreatment of stormwater runoff. The sump depth must be at least 15 inches below the bottom of the trap or at least 12 inches below the bottom of the hood. [Section 4.11.5, 2]
- If non-standard inlets are used to capture runoff, especially from driveways or roadways where the inlets are not in a sump condition, verify that documentation that runoff from the one-year, 24-hour storm event will be captured by the inlet is provided. [Section 4.11.5, 3]
- Verify that inlet spacing is designed to prevent water from overtopping the curb and gutter or drainage ditch. [Section 4.11.5, 4]
- Verify that inlets are sized based on the size of the contributing drainage area, the amount of sediment expected from the discharging waters, the size and frequency of runoff events, and the amount of maintenance expected, recognizing that an undersized system will require more frequent maintenance. For large inlet drainage areas, area drains and yard drains 18 inches in diameter or smaller, or smaller than 2’ x 2’, should be upsized to at least 2’ x 2’ inlets. [Section 4.11.5, 5]
- Verify that all area drains and yard drains 18 inches in diameter or smaller, or smaller than 2’ x 2’, include a permanent pretreatment device, such as a filter bag insert, for pretreatment of stormwater runoff. [Section 4.11.5, 6]